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We consider a compressible laminar boundary layer with uniform pressure when 
x < xo and a prescribed large adverse pressure gradient when x > xo. The Illingworth- 
Stewartson transformation is applied, and the transformed external velocity ul(x) 
then chosen such that 

is constant, where T, is the stagnation temperature. 
For large A, when a thin sublayer exists as the layer reacts to the sharp pressure 

gradient , inner and outer asymptotic expansions are derived and matched for functions 
F and S which determine the stream function and the temperature. The equations for 
F and S are largely uncoupled, in that the first approximation to F is independent of S, 
the first approximation to 8 depends only on the first approximation to F, and so on. 

The skin friction, heat transfer, displacement thickness and momentum thickness 
are all determined, for x > xo, in terms of [ = A(x/xo- 1)Q, and take the forms 

(*)’% 8: = 1.21 68 + - 4.2589cwA-210g A53 
2v0x Tw 

- 2.4459A-2[3+~wA-2&(()+ 1 * 2 1 6 8 ~ i A - ~ [ ~ +  ..., 
(A)+ k)28z = 0.4696+ 1.2168A-2[3+A-3C3(E) 
2voxo 

- 2.1295~,A-~l0gAf;~- 1*2230A-456 + u,A-~C~([)  

where u, = (T, - T,)/T,. The various functions Fo(E), F,([), . . . , C4([) are all initially 
given as slowly converging series. By making repeated and extensive use of various 
properties of flow near a position of boundary-layer separation, the series have all been 
summed to an accuracy of several significant figures. In  particular, it is shown that 
separation takes place when 

6 = 0.09766 + 0 . 0 0 4 0 3 ~ ~  A-1 + 0-00035~LA-~ + . . . . 
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1. Introduction 
This paper considers a compressible boundary layer with a constant pressure po 

when x < xo and a sharp pressure rise when x > xo. The two basic assumptions are 
made that (i) the Prandtl number CT is equal to unity and (ii) the ratio of the viscosity p 
to the absolute temperature T is a function of x alone; thus we have 

/I = C(X)POT/TO, (1) 

where ,uo and To are values at a suitable reference position. Accordingly we may make 
a transformation of variables, due to Illingworth ( 1  949) and Stewartson (1 949), whereby 
the equations are partially reduced to incompressible form. After transformation, the 
equations of motion become (Curle & Davies 1971) 

au/ax + av/ay = 0, (2 )  

as a s  a w  
ax ay V ~ ~ ,  u- +v- = 

where S is related to the temperature T and is given by 

(4) 

With the exception of (l), in which x is measured in the physical plane, x and y other- 
wise represent distances measured along and normal to the wall in the transformed 
plane, with associated transformed velocity components u and v. The suffix 1 refers to 
values at  the edge of the boundary layer. 

We deduce from (5) that 8 + 0 at the edge of the boundary layer, where u +- u1 and 
T -+ TI. Likewise, at the wall we have 

so 

where 
S, = T,/%-I, 

T, = T,[1 +a@-- l)iq]. 
Thus T, is the stagnation temperature, which is equal (when cr = 1) to the wall tem- 
perature for which the heat transfer is zero. Thus S, = 0 when there is zero heat 
transfer, 8, > 0 when the wall is heated and 8, < 0 when the wall is cooled. 

To ensure maximum simplification, the pressure gradient when x > xo is selected 
such that 

is constant and very large. We thus have a generalization to compressible flow of the 
problem first studied by Stratford (1954) and later re-examined by the present author 
(Curle 1976), and the solution reduces to Stratford's when the heat transfer is zero. 
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When x < xo, the pressure gradient is zero and u1 takes the constant value uo. Then 
(2)-(4) are readily solved, the velocity components having been given by Blasius 
(1908) and the temperature function by Pohlhausen (1921). Downstream of x = xo 
i t  is seen from (3) that at the wall (where u = v = 0) 

W dx XO 

Thus the velocity profile has a large curvature a t  the wall, revealing the presence of 
a thin inner sublayer. Inner and outer asymptotic expansions are therefore obtained 
and matched both for a stream function 4 and for 8, the outer solution being essen- 
tially a perturbation of the Blasius-Pohlhausen solution. 

The general form of the results may be illustrated by reference to the skin friction, 
which is determined from the inner expansion and is of the form 

where * 
uw = - Sw , f = h ( L ) .  

1 +sw 2 0  
(7) 

The functions To([),  T l ( f )  and F2(f) are each determined as power series which con- 
verge slowly near to separation, owing to the presence of a weak singularity. By using 
the properties of flow near separation (Goldstein 1948), much as in the incompressible 
problem (Curle 1976), the separation position and the skin friction have been deter- 
mined extremely accurately. The separation position is given by 

f = 0*0976(6)+0*004030~wh-1+0~000351~~h-2+ ... . 
A similar analysis for the heat transfer reveals that 

&, = Golf) + uwh-lGl(f)  + ." 
Using the properties of the thermal boundary layer near separation (Buckmaster 1970; 
Akinrelere 1977), the series for Go(f)  and GI(() are summed. In  particular Go(() ,  which 
gives the solution for the case of a warm wall, changes from 0.469600 when f = 0 to 
0.216286 at separation. Although Go(() falls rapidly near to separation, it does not fall 
to zero, and the value quoted is correct to 5 figures at least. 

Analysis of the displacement and momentum thicknesses also leads to slowly 
convergent series, some of which arose in the incompressible problem. Each further 
series is summed, using the results of Buckmaster for ff ow near separation in a com- 
pressible boundary layer. 

2. The outer solution 
As already noted, when x < xo the velocity a t  the edge of the boundary layer takes 

the constant value uo, and (2)-(4) are satisfied by the Blasius-Pohlhausen solution. 
Thus wo introduce a stream function $, such that u = qkU and v = - $z, and write 

where 
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It is found (Blasius 1908) that fo(7) satisfies 

fl:+fofo” = 0, 

f O ( 0 )  = 0, fIx7)+1 as 7+m, 

s = 8Jl-f;). 
and (Pohlhausen 1921) that 

The boundary-layer approximation will not hold near x = xo, where the pressure 
gradient is discontinuous, but otherwise, when x > xo, (2)-(4) will apply. The outer 
solution is a perturbation of the above solution and, following the incompressible 
analysis (Curle 1976), we write 

and (8) 1 @ = ( 2 u o ~ , x ) W 5 , r )  

s = SW{1 - F, + s*g, ?I)}* 

We substitute into (2)-(4), using the form (6) for the velocity ul, and find that F and 
S* satisfy 

and 

Since h is large, we look for a solution 

52{Fqq?/+qq7} = 2ht2(1 +A-3‘$3){1 + o ; ( s * - ~ ) } + ~ ( h 3 + % ) { ~ ~ E - F g ~ , )  

52(S,*, + Fs;)  = 2h‘$2( 1 + h-3‘$3) (1 + aw(S* - F.)} + #(A3 + 53) {F,S? - 4s;). 
(9) 

(10) 

m, 7) = fdr) + A - Z o t ; ,  7) +h-210ghf2L(trl) +h-Y2(‘$, 7) 

S*(& ‘I) = h-%(5,9) + 
+h-310 gh(f3,(5,r)+h-3f,(ll)+...  , (11) 

+ A-3logAs,,(E, 7) + k3Q3(5, 7) + .. . * (12) 
k ( 5 , 7 )  + h-2& 7) 

Substituting into (9), and comparing like powers of A and logh, yields in turn 

f;fl,s-f:fls = 0, f;f2L.E-f:f2LE = 0, (13)1(14) 

f ; f i , E - f o ” f z E  =flsflq,-f&/r- 3E2(1 -uwf;), (15) 

fi f 3LqE -fo” f 3L& = f l ,  f2Lqq -f1, f2LqE +f 2 g  fl,, - f 2Lq fl,S, 
f;fS,E-.fo”fg =f&,,-f1,f2,~ +f2tflqq -f2,flqc+ 30;,~~(f~,--~~), 

(16) 

(1  7) 

f;Sq = 0, f&y = 0, (1% (19) 

fiszc; = f l p l , - f l q ~ l ~ -  3t2(1 - - f l W f &  (20) 

(21) 

(22) 

whilst ( 10) yields 

fb3L4 = fiES2Lq -f1,s2g +f2L561, -f2Lqs15, 

fhS3E = fl&q - f l q S %  +.f%Slq -f2qSlE + 3nw52(fi, - s1). 
These equations are to some extent uncoupled, since none of (13)-(16) depend upon 
the s functions, and we may solve the equations successively. Thus 

fl = m)f;, f2L = cw;, (231, (24) 

(25) 

f3L = Wf,”+E(5)f& (26) 

f3 = QB3f5+B~fo”+P(5) f ; f53~g~  i - ~ , f 3 B h ~ ,  (27) 

f 2  = W2f; + WWb + E3q1 + a,khl, 
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and 

s1 = 0, S2L = 0) s2 = a w f 3 - f 3 / f &  (281430) 

s3L = 0, s3 = f3Bfi(fi)-2. (311, (32) 

Here B,  C ,  D,  E and P are arbitrary functions of f ,  and the function gl(7) arose in the 
incompressible problem (Curle 1976). The function h, satisfies 

fib; - f hi = f & 
and i t  may be shown that 

(33) 

h, = q log + O(741og 7) for small 7. 

Numerical integration of (33) shows that 

h, - 7-0-301753 as q + a .  

It is easily shown that these outer solutions cannot satisfy the boundary conditions 
at  7 = 0 for any choice of the arbitrary functions. As in the incompressible problem, 
when the boundary layer reacts to the sharp pressure gradient there is a thin inner layer 
in which 7 is not the appropriate scale. The correct scale normal to the wall is obtained 
by writing 

Before seeking the inner solution, we shall note the outer boundary conditions thereon. 
Thus we take (11) ,  substitute forf,, f 2 L ,  etc. from (23)-(27), expand for small 7 and 
rewrite in terms of the inner co-ordinate z. Likewise we take (12) and substitute for 
s,, s2L, etc. from (18)-(22). This yields 

2 = AE-17. 

F N A-a{*az2[2 + azB[ + iaB2 + a-1[3}  

+ A-3 log A{& + B} {aC - a,f3} 

+ h-3{a,[4z(log [ +log z )  + a,[3B(log 6 +log z + 1) + a[Dz + aBD} 

+A-4logA{afEz+ ...}+ A-4{a[Pz+ ...}+ ... (34) 

(35) 
and 

These boundary conditions indicate the form of the inner solution, which we now 
investigate. 

S* N A-l{ - a-1[2z-1 + a-lfBz-2. . .} + A-2{awf3  + . . .} + . . . . 

3. The inner solution 

new variables [ and z, and find that 
To derive the equations for the inner solution we rewrite (9) and (10) in terms of the 

(1 + ~ - 3 g 3 ) - 1  { F ~ ~  + A-~EFF~J = 2~-263{1+ U,(S* - i i g - i ~ ~ ) }  
+ # A 2 { ~ - 1 F k ~ ; ,  - 6-'Fa FE - f-ze) (36) 

and 

g i  + ~ - 3 ~ 3 ) - 1  {qz + A-~Fs:}  = 2~--163{1+ a,(&* - A C - ~  + g ~ y < q  - 48;). (37) 

(38) 

Guided by the boundary conditions (34) and (35) we seek a solution 

F = A-'F;(f, Z )  + A-'Ff(f, Z) + A-'F; (5, Z) + . . . , 
s* = A-lSf(lg, 2) + A-28;([, 2) + . . * . 
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We have not included terms such as A-31~g h FTL(6, z )  in this expansion. If such a term 
is included, the equation for FiL is homogeneous, so there is a solution F:L = 0. This 
is consistent with the boundary condition (34) provided that we choose C(5) to be 

C(5) = CTwa-1ga. (39) 

E(6)  = 0. (40) 

It also follows, if there is no term A-410gh F&(z), that 

Upon substituting from (38) into (36) and (37), it  is found that F,*, F", FZ, Sf and S: 
satisfy the equations 

(41) 

(42) 

= g 6 - y ~ : ~  F; - F;", FGJ - g - 2 ~ ~  + 2~, f ;3(~:  - ~ F C ) ,  (43) 

(44) 

(45) 

F&az + &'(F&z F$ - F& F&} + %6-2F$? = 263, 
F&z + &'{FO*, FEZ + F&2F$ - F&F& - F& FE} + $6-'F& F:, = 2~,63(Sf - E-'F&, 

FLzz + $C-1{F,*5F&z + F,*zz F11; - F:2 F& - F& F&} + $c-'F& F z  

Sg, + $E-l(F$CS& - FZS SfC) = 25', 
and 

S&.+Cg-'(FitS&- F,*,S$) = tE-l(FT,S$- FGS&) + ~u,~'(AS'~-E-~F&). 

The above equations are to be solved in turn for Fg, S,*, Ff, Sg and FZ. 
The equation (41) for FZ is solved subject to the boundary conditions 

FZ = F; = 0 when z = 0 
and, from (34), 

which is precisely the incompressible problem (Curle 1976). A solution has been given 
in the form 

FZ(5, z )  = tzF0(z) + t3F1(z) + E4F'(2) + CSF3(z) + C6F4(z) + E7F6(z) + . .. (46) 

F* N ia$z2 + aB& + iaB2 + a-1% as z -+ ao, 

It may be noted that 

4 6 )  = ?%En 
a 

= - 6.3354866' - 19*214414<3- 104*20558E4 - 684.88976' - 4980.576 6..., (47) 
and, for evaluating the skin friction, 

) (48) 
F:(O) = 0.469600, F;(O) = - 3.137148, F",O) = - 4.906484, 

Fi(0) = - 23.33114, F:(O) = - 144.73528, F:(O) = - 1019.4626. 

The reason why the equation for FZ takes the incompressible form is that the thick- 
ness of the inner layer tends to zero (on a physical scale) as h-tm and so, if the heat 
transfer remains finite, the variation of temperature across the inner layer will become 
less as h increases, and the problem becomes an incompressible one as A -t ao. 

We now take the equation (44) for Sf, noting that the velocity enters only through 
the incompressible approximation F t .  The equation is thus of the type in which 
temperature differences are sufficiently small that fluid properties such as density and 
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viscosity may be treated as constant. The equation for S: must be solved subject to 
the boundary conditions 

and, from (35), 

We seek a solution 

Sf = 0 when z = 0 

S? N - a-162z-l+ a-1EBz-2 . . . as z --t 00. 

S:(f, z )  = E2Sl(z) + E3S2(z) + E4S3(z) + f5S4(z) + E6S&) + . . . , 

Sl; + Qaz2S; - $azSl = 2, 

8; + $az2S; - 2 ~ 2 5 ,  = +Fi S, - 2F1 Si, 

whence it is found that 

S; + #az2Sj - gazS, = 2(F;S2 - F,S;) ++(Pis, - 2F2S;), 

S ~ + ~ a z 2 S ~ - ~ o a z S ,  = iFiS,- 2FlSj+ 2 F ; S 2 - ~ F , S ~ + ~ F j S 1 - ~ F 3 S ~  

S," + Qaz2S; - 4azS5 = J$Fi S, - 2F1Si + iF; S, - $F2Sj 
and 

+2FjS2-+@F3Si++FiS1-4F4Si. 
The boundary conditions are 

S,(O) = S2(0) = S3(0) = S,(O) = S5(0) ... = 0, 

whilst for large z equation (49) yields 

S, N a-1z-1, S, - a-1a,z-2 ( n  2 2), 

with the a, given by (47). It is easy to work out sufficient terms in these asymptotic 
forms that the equations may be solved in turn numerically, with the outer boundary 
conditions satisfied a t  z = 10 or so. This was done, and the first derivatives at the 
wall, required in calculating heat-transfer rates, are 

] (56) 
S;(O) = - 2.147263, 

S;(O) = - 39.18331, 

Si(0) = - 1.980930, 

SS(0) = - 238.2440. 

Sj(0) = - 7.483714, 

We now consider the equation (42) for FT. Since the right-hand side is proportional 
to a,,,, we anticipate a solution of the form 

F? = a,,,(E4G2(z) + E6G3(z) + PG,(z) + E7G,(z) + . . .>. (57) 

There are no terms in c2 or 6,; the equations for G,(z) and G,(z) can be solved explicitly 
in terms of confluent hypergeometric functions to show that Go and G, are zero when 
the appropriate boundary conditions are applied. Similar arguments also show that no 
terms in En log f [  can arise in (57). Since the outer boundary condition 

FT - aw~4(10g~+logz)z+a, , ,~3B( l~g~+logz+ 1)  +aD&+aBD 

appears to contain terms in 5310g[ and E410gg, the function D(E) must contain 
6" log6 terms to cancel these. Thus 

D(g) = ~ w ( - a - 1 ~ 3 1 0 g ~ + d 3 ~ 3 + d 4 ~ 4 + d 5 ~ 5 + d 6 ~ 6 +  ...}. (58)  

Upon substituting 
B(6) = a2~2+a3E3+apE4+..., 
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the outer boundary conditions on the various G,(z) become 

I G,(z) N z log z + ad3z,  
G ~ ( z )  N u,logz+ad4z+au,d3+u2, 
G&) N u310gz+acE,z+a(a,d4+u3d3) +a3, 
G&) N u4 log z + ad6. + a(u2d5 + u,d4 + u,dJ + a4, 

(59) 

and the boundary conditions at z = 0 are 

G,(O) = G;(O) = 0, G3(0) = Gj(0) = 0, etc. (60) 

Upon substituting from (57) into (42) we find that the equations for the G functions 
a,re 

G t  + #az2G: - $azG; + $aG, = - 2az, (61) 

G t  + #az2Gi - YazGj + $aG3 = 2(S1 - F;) + g(5F; Gh - 4FiG, - 34G,”), 

6: +gaz2G~-4azG~+4aG4 = 2(S2- F;)+#(6F;Gj-5FiG3-3FlGjl) 
+ #( 6F; G; - 4Fg G, - 4F2 Gg) 

(62) 

(63) 
and 

G ~ + $ a z 2 C , ” - ~ z G ~ + W G 5  = 2(S3- FA)+g(7F;Gi-6FiG4-3FlGi) 
+$(7F;Gj - 5FgG3- 4F2G;)+g(7FjG;- 4FiG,- 5F3Gg). (64) 

These equations were solved numerically as before. In  the case of (61) the solution was 
checked analytically, since there is a particular integral -&az4 and the comple- 
mentary function is again a confluent hypergeometric function. The second derivatives 
a t  z = 0 are 

G”,O) = 1.397128, G,”(O) = 3.946802, Gi(0) = 29.16163, G,”(O) = 244.7864. (65) 

It was deduced successively, from the asymptotic forms of the solutions for large z, that 

d3 = 1.012848, d4 = 23.74748, d, = 167.8087, d6 = 1391.763. (66) 

We turn now to the equation (45) for Sg. Since all the terms on the right-hand side 
are proportional to a,, and the outer boundary condition is given from (35) by 

S , * N ~ , [ ~  as ZJOO, 

we anticipate a solution of the form 

S,*(5, 4 = a,{53Tz(4 + t4T&) + EST4(z) + E6T&). . .}. 

Ti + Qaz2T; - 2azT2 = - 2012, 

Upon substitution into (45), with Ft given by (46), Sy by (50) and FT by (57), we find 
that 

(67) 

Ti+gaz2Tj-4jazT3 = 2(S1-F;)+2(F;T, -F1T~)+Q(G;S1-G,S;) ,  (68) 

T;+gaz2T;-YazT4 = 2(S2-FL)+#{4F;T3- 3F1TA+3FLT2-4F2T; 
+3C~S2-4G,S~+2GjSl-5G3S;} (69) 

and 

TZ + $az2TL- 4azT, = 2(S3- Fj) + #{5F;T4- 3F1Ti + 4F;T3- 4F2Tj + 3FAT2- 5F3T; 
+ 4G; 8 3  - 4Gz S; + 3 Gj 232 - 5G3 Si + 2Q; S1- 6G4 S;}. (70) 
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The boundary conditions are 

and 
T2+1, T3,T4,T6+0 as Z-JCQ. 

Equations (67)-(70) are solved numerically in turn, the solution of (67) being readily 
checked, since this equation may be solved in terms of confluent hypergeometric 
functions. The first derivatives at = 0 are 

T2(0) = T3(0) = T4(0) = T6(0) = 0 

Th(0) = 0.790839, T;(O) = 0.974128, Ti(0) = 6.10936, TL(0) = 44.7703. (71) 

We turn finally to the equation (43) for Fl, which has a solution of the form 

P$(f, 2) = aL{E6H4(z) + E7HS(z) + . . .}, 

Hq + faz2Hi - 4azH; + 4aH4 = 2(T2 - G;) + 2Gia - $G2Ci 

whence the appropriate substitutions and algebra yield 

and 
(72) 

H: + &xz'HE - +zzHL +*HS = 2(T3 - Gi) + 8{7F; H i  - 6F; H4 - 3F1 H i }  
+#{7G~G;-5G~G3-4G2G~}. (73) 

The boundary conditions at z = 0 are that 

H4(0) = Hi(0)  = Hs(0) = HL(0) = 0, 

and those for large z follow from (34). Thus 

F1: - atP(E)z+ ..., 
and so 

Numerical solution of (72) and (73) shows that 

Hi(z ) ,  H:(z) -J 0 as 

Hi(0 )  = - 0.61283, H,"(O) 

and the forms of H4 and Hs for large z show that 

Z-JOO. 

= - 10.9829, (74) 

P(E) = - ~:{8.86289[~ + 92.2385c6 + .. .}. 

4. Analysis of skin friction and heat transfer 
The skin friction and the heat transfer are both determined by conditions close to 

the wall, so we derive them from the inner solution. The skin friction in the incom- 
pressible plane is 

Upon substituting for F:, FT and F$ we have 

(?Y)*p*o - - {F,"(O) +flF;(0)+E2Fi(O) +E3Fi(0) +E4Fi(0)+EsF,"(O) ...} 

+awh-1(E2G~(0)+~3G~(O) +[3G~(0)+flsG~(O) ...} 
+ a$A-2{[4H:(0) + E6H:(O) + . . .} + . . . . (75) 
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We note that the skin friction for any fixed value of E depends solely upon a;, A-1. With 
the values of the coefficients substituted from (48), (65) and (74), we therefore have 

- 0.469600- 3.1371486- (4.906484- 1.397128~wA-l) E2 
2v x + rz 

- (23.33114- 3.94680aWA-l) g'- (144.73528 - 29.16163gwA-' 

+ 0*61283a$A-') 5 4  - (1019.4626 - 244*78640;,A-l 

($1 ruouo- 

+ 10-9829&v2) c6 + . . . . (76) 

In  the same way, the heat transfer may be derived as 

+o;A-~([~G;(O) +['G;(O)...}- C~A- ' { [~T; (O)  +f'T;(O) ...} 
= (0.469600 - 0.9898856 - 2.925554f; - 15.84742963 

- 105~55197~4-781~2186~6...} 
- a;A-1{0.606288f;2 + 2.9726745' + 23.05227c4 + 200-016165 

+...I+... (77) 
upon substituting for the coefficients from (48), (56), (65) and (71). 

Following the procedure used in the incompressible case, we estimate the separation 
position by truncating the series (76) successively after two, three, four, five and six 
terms, which yields values which decrease monotonically. 

Likewise, upon squaring the series (761, we have 

2v,x 

P 3 4  
- ( ~ * ) 2  = 0.220524- 2*946409c+ (5.233527 + 1.312182awA-1) 6 2  

+ (8.87212- 5.o59i5gW~-1) p+ (34m469- i i .08476aw~-1 

+ 1*37640a$A-2) g4 
+ (179.5804- 56.9883aWh-l+4.5583a$h-2)k+ ... . 

Truncation here yields values which increase monotonically towards the same limit. 
Given the separation position for the incompressible problem, 

t, = 0.09766, 

it proves easy to examine the way in which the estimates of 5, c h n g e  with awA-l. For 
each of the values of awh-l = - 1, - 4, 0, 4 and 1, estimates of the change in 5, calcu- 
lated from the (rz)2 series converge quickly to a limiting value which is thus deter- 
minedveryiaccurately. The values of .& are shown in table 1. It should be noted that, 
although the values of 6, are not correct to the number of figures shown, the changes in 
5, are almost certainly correct to this number of figures. Upon fitting these five points 
to a quartic polynomial, we find that 

5, = O-O9766O{l+ 0.041269~ + 0.003594~~ + 0-000396E5 + 0.000041~4}, (78) 

where e = awA-l, and we shall use this formula in all that follows. In  view of the 
magnitudes of the coefficients we may expect it to be accurate even when 1.1 is signi- 
ficantly greater than unity. 
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u,h-1 L 
- 1  0.093946 
- f  0.096728 

0 0.097660 
4 0.099768 
1 0.102084 

TABLE 1. Variation of separation position with ~ ~ h - 1 .  

Turning now to the skin friction, we take the series for ( T Z ) ~  and write 

E / L  = P, 
where gs is given by (78). It follows that 

(79) 

where 

FO(V) = 0.220524 - 0.287746E + 0*049915$ + 0.008264% 
+0*003140~4+0~001595~6... , (81) 

100Fl(g) = - 1*1875019+ 1*663477~2-0~368914~-0-048989~4-  0.017707E5 ..., (82) 

and 

1O0OF2(E) = - 1*03419E+ 1.47676E2-0*4520855+0.03599E4- 0.0081356 ... . (83) 

The function Fo(5) is basically the square of the skin friction for the incompressible case 
(Curle 1976), and need not be further considered. The series (82) for Fl(E) converges 
well except when E is close to unity. We may rewrite it as 

lOOFl(g)/(l-E) = - 1*1875015+0.475976E2+ 0.107062% 
+ 0*058073g4 + 0*040366~5 + . . . , (84) 

which is likely to be an improvement near to E = 1, since it satisfies the condition 
F'(1) = 0. The singularity at separation has been studied by Buckmaster (1970), who 
concludes that the skin friction near 5 = 1 should include not only terms like (1 - S)a, 
which are present in incompressible flow (Goldstein 1948), but also terms like 
(1 - E)4 log (1 - p) together with smaller multiples of weaker singularities. Numerical 
support for Buckmaster's conclusions has been given by Davies & Walker (1977). I n  
the present analysis, the most severe singularity in the series (84) is thus expected to 
be a multiple of log (1 - f ) .  By comparing coefficients, we estimate the multiple as 
- 0.1860, whence (84) becomes 

100Pl(g)/(l - 5 )  = -0.186010g (1 - E ) -  1*373501~+0.382976~2+0*045062~ 
+0~011573~4+0~003166~5.. .  , (85) 

which may be used to calculate Fl(E) even when E is close to unity. 

lOOOF&)/( 1 - p) = - 1.03419g + 0.44257:' - 0.0095155 + 0*02648E4 + 0.0183555 + . . . 
We may similarly rewrite (83) as 

N -0*0917510g(l -g)- 1*12594f+0*39670P2- 0.04009pS 

+ 0.00354~4 + . . . . (86) 
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E 
0 
0.1 
0.2 
0.3 
0.4 
0-5 
0-6 
0.7 
0.8 
0.9 
1 .o 

lOFO(6 
2.205242 
1-922573 
1.650432 
1.389459 
1.140430 
0-9043 15 
0-682379 
0.476369 
0.288930 
0.124833 
0 

100Fl(S) 
0 

- 0.102489 
-0.173997 
- 0.216944 
- 0.233936 
- 0.227806 
- 0.201709 
-0.159288 
- 0.105040 
- 0.045474 

0 

1000FJE) 

- 0-08910 
- 0.15133 
-0.18928 
- 0.20551 
- 0.20249 
-0.18275 
- 0.14886 
- 0.10365 
- 0.05077 

0 

0 

QOCC) 

0.489600 
0.459638 
0.449013 
0.437589 
0.425 173 
0.41 1486 
0-390701 
0.373549 
0-352555 
0.323723 
0.216286 

TABLE 2. Values of Fo(G, P I @ ,  P,([), Qo(d and a,([). 

1 OQlt5) 
0 

- 0.00485 
- 0.01035 
- 0.02089 
- 0.03329 
- 0.05004 
- 0.07321 
- 0.10699 
- 0.16147 
-0.27183 
- 2.66604 

Values of Fo(g), Fl(g) and F,(g) ,  derived respectively from (81), (85) and (86), are shown 
in table 2, and may be used to determine the skin friction at any position. 

Both Buckmaster (1970) and Davies & Walker (1977) noted that, for the case of 
a heated wall, the skin friction appears to have a zero very slightly upstream of the 
true separation point, and a similar phenomenon may be noted here. From the 
incompressible analysis (Curle 1976) we know thak 

Po(g) - 0.0676(1--)+ ... as p + l ,  

and we may deduce from (85) that 

So, ignoring a:A-2 terms, we see that rZ2 is zero not only when p = 1 but also when 

&(g) N (1 - g) { - 0.001860 log (1  - g) - 0.009295). 

0~0676-~wA-1{0~0018601~g(l -g) +0*009295} = 0, 

and this equation has a root < 1 provided that a, < 0. For the problem considered 
here, the pressure gradient itself depends on the wall temperature, which is why the 
phenomenon occurs here for cooled, rather than heated walls, The location of this 
earlier position of zero skin friction is easily calculated to be at 

at 

and at 

1-9-2x10-W when uwh-l=-&,  

1 - f  N 1 x 10-le when crwh-l = - 1 

1 -g N 1 x 10-10 when uwh-l = - 2. 

Clearly, as Davies & Walker also observed for their problem, it is impossible (from 
a practical viewpoint) to distinguish this zero from that at = 1 for values of uwA-l for 
which the present analysis holds. 

Turning to the heat transfer, we analyse (77), and first consider the 'warm wall' 
case, for which 

= 0.469600- 0.9898855- 2*295554t2- 15.847429%- 105.55197t4- 781.21866' ... 
= 0.469600 - 0-096672g- 0.027902g2 - 0.014761p- 0*009601g4 - 0*006940~'... . 

(87) 
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It may be inferred, from the work of Stewartson (1962) and Buckmaster (1970) for 
example, that when $ approaches unity the series (87) will behave like 

A +B(1 -$)&+C(l -$)#+... . (88) 

The details for the 'warm wall' case are known (Akinrelere 1977) and for the present 
problem it is straightforward to show that (88) takes the form 

@,(1 + 0*628505( 1 - E)* + 0.377082( 1 - g)* + 0.240746( 1 - $)2 + ...I. (89) 

We accordingly expand (89) in powers of p and divide into the series (87), which leads to 

Go(E)/{ 1 + 0.628505( 1 - $)& + 0.377082( 1 - P)t + 0.240746( 1 - E)2} 
= 0.209052 + 0*005937E+ 0.000940p + 0.000256% 

+ 0-000080$4 + 0.00001 6$6 + . . . . (90) 

Values of Go($) may be calculated readily to at least five significant figures, and the 
results are also shown in table 2. We note that, although Go& falls rapidly as $ 
approaches 1 (Go falls by about 33 % when g changes from 0.90 to 1), it is certainly 
non-zero at separation. 

More generally, (77) gives the heat transfer and, substituting for 6 from (78) and (79), 
we have 

2voz ' 
= Go($) + vwA-lG1($) + . . . , -(d T w - T ,  

where 

lOOG,($) = - 0'398957E- 0.8085479'- 0*459633$'- 0*368187$4- 0*320887$5+ .. ., 
again a slowly convergent series. From the work of Buckmaster, we deduce the 
presence of terms which are singular like (1 - E)i log (1 - 5 )  and like (1 - $)i, together 
with smaller multiples of other mildly singular terms. We may estimate the required 
multiples of these terms by comparing coefficients, and conclude that the series for 
1 OOG,(E) includes multiples of approximately 

22.98(1-$)'-8*15(1 -$)'log(l -$). 

Upon extracting these terms we have 

lOOG,($) = 22.98( 1 - E)* - 8 . q  1 - $)* log (1 - $) - 22.98 - 2.803957E 

- 0*691672$'- 0.136768p- 0*034792z4- 0.009556f6+ ..., (91) 

which leads to the values of G,($) shown in table 2. These are mainly much smaller than 
the values of Go($). Very close to $ = 1, however, Go($) falls very rapidly (as observed 
earlier) whilst GI($) rises even more rapidly in magnitude. Thus, at separation, 

Go(l) +vWk1Gl(1) N 0*216286-0*266604~,h-~+ ... , 
and the heat transfer varies considerably with wall temperature except when crWA-' is 
fairly small. 
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5. Calculation of displacement thickness and momentum thickness 
We shall seek to calculate the quantities 

which are related to the true displacement and momentum thicknesses by 

Taking Sf first, we substitute for S from (8), and further write 

- u =-(-) u u1 -l = (1+mw43+...)~, A-2 

Ul  uo uo 
whence 

~ F , + S , ( ~ - - F ~ + S * ) +  ... 
2v0x 

A-2 
= (l+S,)lim(q-F)+ ...) dq. (92) 

v 4  
The integral in (92) must be split into two parts, representing integration over the 
inner and outer regions. Thus 

In  the first integral we substitute for S* from (1 2). Upon using (28)-( 30) and neglecting 
terms smaller than order A-2, we have 

d 
S* = A-2E3{aw - l&} = A-2p (a, -&(hl/f;)). 

Thus 

Likewise, in calculating the second integral in (93) we write 

after substitution from (50). Now it may be deduced from the outer boundary con- 
ditions on Sf that the asymptotic forms of the integrals in (96) are 
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5 
0 
0- 1 
0.2 
0.3 
0.4 
0.5 
0-6 
0.7 
0.8 
0.9 
1.0 

10 B l ( 6  
0 
0.00623 
0.02578 
0.06017 
0.11144 
0.18238 
0.27705 
0.40204 
0.56926 
0.80807 
1.35724 

100 Ql(l) 
0 
0-00293 
0.00553 
0.00007 

- 0.02047 
- 0,0630 1 
-0.13490 
- 0.24443 
- 0.40155 
-0.61900 
-0.91403 

lo4 cdr) 
0 
0.002 1 
0.0159 
0.0509 
0.1149 
0.2136 
0.3518 
0.5333 
0.7617 
1.0412 
1-3776 

TABLE 3. Value3 ofB,([), Q,&, C3(f) and C&). 

105C4(0 
0 
0.0025 
0.0190 
0-0602 
0.1335 
0.2430 
0.3894 
0.5695 
0.7749 
0.9917 
1.1991 

where /3', p3 and b4 may be deduced from the numerical solutions as 

= - 0.56725, p 2  = - 9.7973, p.3 = - 42.664, ,84 = - 251.417. (97) 

We now substitute into (93), approximate (94) for small a and (95) for large values of 
z = aht-l, and deduce that 

We substitute into (92), take limiting forms as q-fm, then substitute for C ( ( )  from 
(39), for D(5) from (58) and (66), and for F1, p2 etc. from (97). This leads to 

(&)'a?( 1 + flW)-l = 1 -21 6783 - A-lB(6) - 201-l~,h-~ log A63 

- 2.445940A-263+~,A-2&(6)+ 1.216783~5h- '~~+ ... , 
where B(6) is given by (47) as 

and 

As before, using (78) and (79) to rewrite in terms of 5, we have 

B(6) = - 6.3354865'- 19*21441463- 104*20558[4- 684.88976'- 4980,576 '... , 

Q(5) = 2 ~ - ~ 6 ~ l o g [ -  4.617170E3- 33.5447664- 210.472766- 1643*1806'... . 

( U O / ~ V O Z ) )  @(1+ 8,) = 1.217683 + h-lBl(P) - 0*003967~~h- '  log hv3 
-0*002278h-2~++wh-2&1(~) + 0 * 0 0 1 1 3 3 ~ ~ h - ' ~ +  ... , (98) 

where 

1 OBl(c) = 0.604259' + 0.1 7897p + 0*09479E4 + 0.06084% + 0.04424v0 + . . . , (99) 
and 

lOOQl(P)  = 0*498745'+ 0.396695510gP- 1.13129p- 0.14865~4 

- 0*06143g5- 0-03302p + . . . . (100) 

The series (99) for B,(v) arose in the incompressible problem (Curle 1976) and its 
sum has been reproduced, for convenience, in table 3. The series for Ql(t) converges 
tolerably well and its sum is also shown in table 3. 
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Turning to the momentum thickness, the momentum-integral equation in the 
transformed plane (Curle & Davies 1971) takes the form 

We substitute for (au/ay) ,  from (76)) for u1 dul/dx from (6) and for Sf from (98), and 
then use (7), (78) and (79) to change the variable from x to 8. The contributions from 
(aulay),  and from S,* are partially self-cancelling since, in the incompressible case at  
any rate, the main singularities in these terms balance exactly. The final series is 
therefore fairly convergent and, after integrating, we find 

(x)' (a)'@ = 0.469600+ 0-001133A-253+h-3C3(~) + O ~ O O O ~ ~ O C T ~ A - ~ ~ ~  
2voxo 

+cT,~-~C, (E)  + 
+ ~ & h - ~ ( 1 . 8 0 1 ~  + 0.053%)) + . . . , (101) 

l@C3(f) = 2.1870p- 1 ~ 0 7 0 1 ~ 4 + 0 ~ 2 0 6 9 ~ 6 + 0 ~ 0 3 2 8 ~ 6 + 0 ~ 0 1 1 6 ~ 7 + 0 ~ 0 0 5 4 ~ 8 +  ... (102) 

where 

and 

106C4(p) = 2.7077p- 1.7665E4+ 0.7993%+ 0-1847E610gE- 0-4941E6 
- 0*035@ - 0.0094p + . . . . (1 03) 

These two series are sufficiently convergent to be readily summed, and the sums are 
shown in table 3. 

Numerical integration of the various ordinary differential equations in this paper 
was carried out by Miss S. Horsburgh and Mrs M. F. McCall. 
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